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Free streamline flows with singularities
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We rederive and expand upon a method for finding solutions to the two-dimensional
irrotational (inviscid) flow equations in the presence of a free surface, found by
Hopkinson. This method allows the flow to be driven by placing singularities, like
sources or vortices, in the interior of the flow domain. We then apply the method to
find a number of novel solutions: separated flow driven by a source, vortices behind a
plate and free-surface flow stirred by a double vortex. Free surfaces generically exhibit
cusp singularities with a 2/3 power index, similar to those found in very viscous
flow.

1. Introduction
A streamline is called ‘free’ if the pressure along it is constant (Batchelor 1967).

Such free streamlines arise in many physical problems in which fluid motion may
be described in the potential flow approximation. One important example is the free
surface between a fluid and a gas, if the effects of surface tension and hydrostatic
pressure may be neglected. A second example arises in the context of separation from
a solid body, which occurs if a body is placed in a flow at high Reynolds number. The
shear layer between the outer flow and the stagnant wake region can be modelled to
a reasonable approximation by a free streamline; see Smith (1986) for a discussion
of the limitations of such an approach, relating in particular to the closure of the
cavity. In two dimensions, powerful methods exist for finding exact solutions to free
streamline flows, using complex mapping techniques.

However, almost all exact free streamline solutions known in the literature are
limited by the way in which the flow may be driven. They involve either uniform
streams that come in from infinity, or jets which come in from or escape to infinity.
It would contribute much to the usefulness of the method if the flow could be
driven from within the flow domain. In the context of inviscid flows, this is usually
done by introducing singularities, such as sources or point vortices into the interior
of the flow (Batchelor 1967). A few particular free streamline solutions with interior
singularities are presented in the classical textbooks of Birkhoff & Zarantonello (1957)
and Gurevich (1966). The relation of interior singularities to small surface tension
asymptotics has been explored in Chapman & Vanden-Broeck (2002). The present
paper is devoted to a general method which permits one to describe free streamline
flows with any combination of internal singularities, for which the standard method
fails.

† Email address for correspondence: jens.eggers@bris.ac.uk
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We consider steady solutions to the two-dimensional incompressible inviscid flow
equations. If the flow is irrotational, the fluid velocity u =(u, v) satisfies

u = ∇φ, �φ = 0, (1.1)

where φ is the velocity potential. The pressure and the velocity are related by
Bernoulli’s equation (Landau & Lifshitz 1984)

u2/2 + p/ρ = const . (1.2)

According to (1.2), the fluid speed has to be constant along a free streamline. In this
paper, we calculate the shape of free streamlines in the presence of singularities in
the interior of the flow.

In two dimensions, the flow domain can be represented by a complex variable
z, and the flow itself by the complex potential w = φ + iψ . Here ψ is the stream
function, constant along streamlines. The flow field is determined by the derivative of
the potential:

dw

dz
= u − iv ≡ qe−iθ . (1.3)

Evidently, q is the speed of the fluid motion, and θ its direction. In the flow problems
considered here, flow boundaries will be either solid surfaces or free streamlines.
We will only consider the simplest case where the solids are flat plates, or at least
composed of flat sections, with a constant angle between them. The problem to be
dealt with is that the shape of the free surface is unknown.

A systematic way to rectify this problem was discovered by Kirchhoff (1869), and
perfected by many others (Planck 1884; Love 1891). Namely, the variable

Ω = ln
dz

dw
= − ln q + iθ (1.4)

maps the fluid domain onto a polygon: along a straight solid wall θ is constant, while
along a free streamline q is constant. According to the Schwarz–Christoffel theory
(Carrier, Krook & Pearson 1966), such a polygon can always be mapped onto the
upper half of the complex plane (which we will always call the ζ domain), where
the fluid motion is now represented. As shown in any standard textbook on fluid
mechanics, the potential plane w can also be represented in the same ζ plane, creating
a link between w and Ω . This allows us to integrate the motion and to solve the
two-dimensional flow equation.

The problem that presents itself in the presence of singularities is that the mapping
between the physical domain z and the upper half-plane ζ is no longer conformal.
To fix this problem, two steps are required, as first described by Hopkinson (1898).
First, singularities that will be present in the potential w have to be subtracted, so as
to keep the mapping z(ζ ) conformal. Second, image singularities have to be placed
in the lower half-plane, to make sure that both w and Ω still map to the upper
half-plane.

2. The method
The ultimate goal is to represent the fluid motion via a mapping z(ζ ) in the upper

half of the complex ζ plane, such that z runs over the whole fluid domain. The crucial
condition is that this mapping has no singularities in the upper half of the ζ plane;
all singularities lie either on the real axis or in the lower half-plane, as detailed below.
To find z(ζ ), Hopkinson builds on a paper of Love (1891), which uses the differential
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expressions dw/dζ and dΩ/dζ as starting points. Once they are found, one first finds
Ω(ζ ) by integration. Then according to (1.4)

dz

dζ
= eΩ dw

dζ
, (2.1)

from which z(ζ ) is calculated by another integration.
It is clear that w(ζ ) and Ω(ζ ) can be found by the usual process of Schwarz–

Christoffel mapping (Milne-Thompson 1962), as long as the fluid domain is bounded
by free streamlines and piecewise straight solid walls. Namely, the boundaries of the
fluid domain in the w plane and the Ω plane are polygons, which can be mapped
onto the upper ζ half-plane (Batchelor 1967). However, the beauty of the method lies
in the fact that the method of finding the differential expressions is very constructive,
based on the physical features of the problem. Moreover, this construction neatly
separates the driving forces of the problem on one hand, and the geometry on the
other. Thus the solution to any problem becomes a two-stage process:

(i) Driving forces encoded in the function dw/dζ . Along the boundaries of the fluid
domain (both free and solid boundaries), the stream function is a constant. Thus the
flow region in the w domain consists of straight lines parallel to the real axis, and
consequently dw/dζ must be real on the real axis. The new feature of Hopkinson
(1898) is that it considers flow driven by singularities from within the fluid domain. As
a result, dw/dz has poles of order αi at certain discrete points zi , which are mapped
to corresponding points ζi in the ζ plane. Since z(ζ ) is conformal, dw/dζ has the
same types of poles as presented physically. To ensure that in addition dw/dζ be real
for ζ real one has to add an image singularity at ζ ∗

i , which is the complex conjugate
of the original pole.

In the classical problems usually solved in textbooks (Lamb 1932; Milne-Thompson
1962; Batchelor 1967), the flow is driven by jets or uniform streams coming from
or escaping to infinity. Jets can be described by poles of order βi , located at points
ζ

(r)
i ∈ � on the real ζ -axis, and thus do not require an image singularity. A slightly

different case is that of a uniform stream impinging on an obstacle. Such a stream
can be viewed as a source located at ζ = i∞. If an image is added at ζ = −i∞, the
corresponding potential becomes dw/dζ = Kζ , a stagnation-point flow. In summary,
dw/dζ can be written as a superposition of i = 1 . . . n poles of amplitude Ai inside
the flow, m poles of amplitude A

(r)
i on the real axis and a linear term:

dw

dζ
=

n∑
i=1

(
Ai

(ζ − ζi)αi
+

A∗
i

(ζ − ζ ∗
i )αi

)
+

m∑
i=1

A
(r)
i

(ζ − ζ
(r)
i )βi

+ Kζ. (2.2)

The first sum corresponds to any kind of singularity driving the flow from its interior.
The second sum corresponds to jets coming from or escaping to infinity, while the
last term describes a uniform stream.

(ii) Geometry encoded in dΩ/dζ . The geometry of the problem is described by a
succession of junctions between solid walls and free streamlines. According to (1.4),
Ω has a piece parallel to the real axis on a solid wall, and a piece parallel to the
imaginary axis on a free streamline. In the manner of Schwarz–Christoffel mapping
(Carrier et al. 1966), the 90◦ turns are achieved by placing singularities si on the real
axis of the ζ plane. Thus we obtain the following structure:

dΩ

dζ
=

χ(ζ )√∏l

i=1(ζ − si)
≡ χ(ζ )

S(ζ )
(2.3)
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The function χ(ζ ) is needed to ensure that z(ζ ) is conformal. An important constraint
on χ is that it needs to be real on the real ζ -axis, in order to achieve the correct
Schwarz–Christoffel mapping.

To compute χ , we observe that

Ω = ln
dz

dζ
− ln

dw

dζ
, (2.4)

where dz/dζ is conformal, i.e. free of singularities, in the upper half-plane. This means
that Ω , and thus dΩ/dζ must exhibit singularities at points where dw/dζ has poles
or zeros in the upper half-plane. In addition, there can be stagnation points of the
flow on the solid boundaries, where dw/dζ vanishes. At these points dz/dζ remains
regular as well, so Ω must become singular. The required singularity is determined
from (2.4): let (2.2) have a pole (k < 0) or zero (k > 0) at some point ξ , which may be
real. Then

dw

dζ
∝ (ζ − ξ )k, ⇒ dΩ

dζ
∝ − k

ζ − ξ
. (2.5)

If ξi is in the upper half-plane, dΩ/dζ also needs to have an image singularity,
in order for it to be real on the real axis. Thus there are three different kinds of
contributions to χ , each resulting in a simple pole: first, there are n poles at positions
ζi , coming from the poles of (2.2). Second, there are nz poles coming from zeros of
(2.2), but nz may be zero; let us denote there position by ξi and their order by ki .
Third, there are nr contributions from zeros of (2.2) on the real axis, but only if they
come from a stretch corresponding to a solid surface; we denote their position by ξ

(r)
i

and their order by k
(r)
i . Again, their number may be zero. Thus the function χ is

χ =

n∑
i=1

(
αiS(ζi)

ζ − ζi

+
αiS

∗(ζi)

ζ − ζ ∗
i

)
−

nz∑
i=1

(
kiS(ξi)

ζ − ξi

+
kiS

∗(ξi)

ζ − ξ ∗
i

)
−

nr∑
i=1

k
(r)
i S(ξ (r)

i )

ζ − ξ
(r)
i

. (2.6)

Another slight wrinkle to this construction, not described in Hopkinson (1898), is
the case that some or all of the walls are not straight, but consist of several straight
pieces, joined at an angle. This will result in dz/dζ having corresponding singularities
at nc places ξ

(c)
i on the real axis. In the simplest case of right angles between the

pieces (the generalization to arbitrary angles does not present any problem), these

singularities will be of the form 1/

√
(ζ − ξ

(c)
i ). In view of (2.4) this will result in

Ω having corresponding logarithmic singularities − ln(ζ − ξ
(c)
i )/2. Thus χ acquires

another additive term

χc = −1

2

nc∑
i=1

S
(
ξ

(c)
i

)
ζ − ξ

(c)
i

. (2.7)

3. A classical solution: jet issuing from an orifice
To illustrate the separation between driving forces and geometry introduced in

the previous chapter, we start with a classical solution with no internal singularities.
Our procedure will prove to be somewhat more constructive than the calculation
presented in many textbooks (Lamb 1932; Milne-Thompson 1962; Batchelor 1967).
The geometry is evident from figure 1, which shows the solution as obtained below.
The ‘driving force’ in this problem is the jet going off to infinity. The corresponding
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Figure 1. Fluid drains from a container through a slit to form a jet, which escapes to infinity
at the lower part of the figure. The jet is bounded by the free surfaces between B and C, and
B’ and C’, respectively. Streamlines are shown as well.
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Figure 2. The ζ plane (a), and the Ω plane (b), corresponding to the jet problem of figure 1.

singularity can be chosen at the origin of the ζ plane, so we have

dw

dζ
= −1

ζ
, (3.1)

and the ζ plane looks as shown in figure 2(a). In choosing a characteristic time scale
for the problem, we have normalized the prefactor in (3.1) to unity. This leaves all
geometrical properties unaffected. We have chosen a minus sign since the jet behaves
like a source, and fluid leaves the system towards infinity. A picture of the streamlines
is shown in figure 1; thus the boundaries in the Ω plane look as shown in figure 2(b).

In the ζ plane, we have chosen the boundaries between solid–liquid–solid at ζ = ±1.
This means that χ = 1, since there are no singularities of (3.1) in the upper half-plane
nor zeros on the real axis, and

dΩ

dζ
=

1√
ζ 2 − 1

. (3.2)

For |ζ | > 1, dΩ/dζ is real and positive, and for |ζ | < 1 turns purely imaginary.
Integrating (3.2) we find

Ω = arccosh ζ − iπ = ln(ζ +
√

ζ 2 − 1) − iπ, (3.3)
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where the constant of integration has been chosen to match figure 2. Thus

dz

dζ
= eΩ dw

dζ
= (ζ +

√
ζ 2 − 1)

1

ζ
= 1 + i

√
1 − ζ 2

ζ
, (3.4)

and integral of this expression is

z = ζ + i

[√
1 − ζ 2 + ln

(
1 +

√
1 − ζ 2

ζ

)]
+ z0. (3.5)

The jet corresponds to ζ = 0, where the real part of (3.5) suffers a jump of π. Thus
z0 = π/2 to place the jet at the line of symmetry, and

x = ζ + π/2, (3.6)

y =
√

1 − ζ 2 + ln

(
1 +

√
1 − ζ 2

ζ

)
, (3.7)

for 0 � ζ � 1 is the equation for the shape of the jet, shown as the heavy line between
B and C in figure 1. The flow lines are described by ζ = Aeiθ in the ζ plane, where θ

is a constant angle. If one inserts this expression into (3.5), z will trace out the flow
lines as A is varied from 0 to ∞.

4. A point source next to a wall
Inviscid flow problems driven by sources and sinks placed inside the fluid have

been considered in many previous papers (Vanden-Broeck & Keller 1987; Forbes &
Hocking 1990; Mekias & Vanden-Broeck 1991), but they are generally treated
numerically using boundary integral methods. In some very special cases, exact
solutions exist (Sautreaux 1901; Craya 1949). We consider exact solutions to flow
problems driven by a (two-dimensional) point source of fluid placed at a distance
H from a (solid) wall. If there is no separation (the fluid spreads along the wall to
infinity), the problem is solved classically by placing an image source on the other side
of the wall (cf. Milne-Thompson 1962, p. 210). We now present a different solution to
the problem in which the flow separates from the wall at a position A (cf. figure 3).
The shape of the free streamline, which marks the boundary between the source flow
and the surrounding fluid, needs to be determined as part of the solution. In the ζ

plane, the flow is the same as in the aforementioned unseparated problem, where we
choose the position of the source ζ = iγ , and hence

dw

dζ
=

1

ζ − iγ
+

1

ζ + iγ
=

2ζ

ζ 2 + γ 2
, (4.1)

so that dw/dζ is real for real ζ , as required. Now the ζ plane looks as shown in
figure 4, where the half width of the unseparated region is chosen as unity.

This means the function Ω must satisfy

dΩ

dζ
=

χ(ζ )√
1 − ζ 2

, (4.2)

where χ is real on the real axis. As explained in § 2, χ is the sum of contributions
coming from poles and zeros of dw/dζ . Namely, (4.1) has a simple pole for ζ = iγ



Free streamlines 193
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Figure 3. A two-dimensional source placed at a distance H from a plane wall. At a distance
d from the line of symmetry (marked by symbols A and A′), the flow separates from the wall.
Outside, the fluid is taken to be stagnant.
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Figure 4. The ζ plane (a), and the Ω plane (b), corresponding to figure 3. A source, marked
S, is placed at a distance γ from the wall in the ζ plane.

and has a zero for ζ = 0, which is on the solid wall. Using (2.6), it follows that

χ = −1

ζ
+

√
1 + γ 2

ζ − iγ
+

√
1 + γ 2

ζ + iγ
=

2ζ
√

1 + γ 2

ζ 2 + γ 2
− 1

ζ
, (4.3)

which includes an image singularity at ζ = −iγ to ensure that χ is real for real ζ .
The expression for dΩ/dζ corresponding to (4.3) can be integrated conveniently

term by term. It is useful to use the transformation ζ = sinϕ,
√

1 − ζ 2 = cos ϕ:

Ω0 ≡ −
∫

dζ

ζ
√

1 − ζ 2
= −

∫
dϕ

sinϕ
= ln

(
1 + cosϕ

sinϕ

)
(4.4)

and

Ωγ ≡
∫

2ζ
√

1 + γ 2dζ

(ζ 2 + γ 2)
√

1 − ζ 2
=

∫
2 sinϕ coshαdϕ

cosh2 α − cos2 ϕ
= ln

(
coshα − cosϕ

coshα + cosϕ

)
. (4.5)
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Figure 5. The ϕ plane corresponding to figure 3, coming from the transformation ζ = sin ϕ
of the ζ plane (cf. figure 4). In the ϕ plane, the source is at a distance α from the wall.

where γ = coshα (see figure 5). Thus the transformation to the physical plane obeys

dz

dϕ
= eΩ0+Ωγ

dw

dζ
cosϕ = 2

(1 + cos ϕ) cos ϕ

(cos ϕ + coshα)2
. (4.6)

The integral of this expression can be brought into the relatively simple form

I (ϕ, β) ≡
∫

(1 + cosϕ) cosϕ

(cosϕ + β)2
= −2

β2 + β − 1

(β + 1)3/2(β − 1)1/2
arctan

(√
β − 1

β + 1
t

)

− 2βt

(β2 − 1)t2 + (β + 1)2
+ ϕ, (4.7)

where β = coshα =
√

1 + γ 2 and where we have put t = tan(ϕ/2) for brevity. Now
the mapping that describes the geometry of the free streamlines is

z = 2I (ϕ, β). (4.8)

As seen in figure 5, the free streamlines are described by ϕ varying along the dashed
lines; ϕ = π/2 + iψ , where ψ varies between 0 and ∞, is a parametrization of the free
streamline. Let us describe briefly how this transformation corresponds to variables
in physical space. If H is the distance of the source from the wall, and d the distance
of the point of separation A from the line of symmetry, one obtains

d =
iI (π/2, β)

I (iα, β)
H. (4.9)

Further, the flow between the free streamlines must be uniform far away from the
wall, so Q/V is the asymptotic distance between the free streamlines, where Q is the
volume flux of the flow, and V the speed on the free streamline. For ψ → ∞ one
finds t = i, so I (π/2 + ψ, β) → π/2. Thus one finds

Q

V H
=

iπ

I (iα, β)
. (4.10)

To trace the streamlines inside the flow, one can take the following steps: first, one
has to find the lines along which the stream function is constant in the ζ plane, i.e.
lines of constant Im{w}. Unfortunately, these curves can usually not be parametrized
in closed form. Second, the curves have to be transformed into the z plane using z(ζ ).
To avoid this cumbersome procedure, we formulate a system of differential equations
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Figure 6. The flow around an impulsively started flat plate (Taneda 1987), at a Reynolds
number of 3857.

whose solution traces the streamlines as function of some parameter s. To this end
we require that dψ/ds = 0 and dφ/ds =1, leading to

dζr

ds
= Re

{
dw

dζ

}/ ∣∣∣∣dw

dζ

∣∣∣∣
2

,
dζi

ds
= −Im

{
dw

dζ

}/ ∣∣∣∣dw

dζ

∣∣∣∣
2

. (4.11)

To find the parameter form (x(s), y(s)) of a free streamline, one also has to solve the
equations

dx

ds
= Re

{
dz

dζ

dζ

ds

}
,

dy

ds
= Im

{
dz

dζ

dζ

ds

}
. (4.12)

The flow lines shown in figure 3 have been obtained by solving the four equations
(4.11), (4.12) simultaneously, with initial conditions in all directions around the
source.

5. Two vortices behind a flat plate
We now model two vortices such as they appear behind a bluff body, for example,

when a plate (Hudson & Dennis 1985) or a sphere (Elcrat, Fornberg & Miller 2001)
is placed in a uniform stream. However, since we have not attempted to describe
the outer flow past the body, our solution is a better model for the case that the
wake flow is surrounded by stagnant fluid. Such a flow is created by setting the plate
in sudden motion, and then stopping it again (see figure 6). Vorticity is introduced
into the flow by separation from the edges of the plate (Saffman 1992), and two
counter-rotating vortices form, which appear to have a well-defined core position. A
shear layer forms, which is unstable to the Kelvin–Helmholtz instability, and results
in a sequence of small-scale vortices. Our model approximates the shear layer as
a jump in the velocity, and of course does not include any of the instabilities (see
figure 7b).

The singularity of a single vortex behaves like w ∝ −i ln z. Thus the contribution
of a vortex of strength m at a = α + iβ in the ζ plane, including the image vortex at
a∗, is

dw

dζ
= −im

[
1

ζ − a
− 1

ζ − a∗

]
=

2mβ

(ζ − α)2 + β2
. (5.1)
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Figure 7. (a) The ζ plane for two vortices behind a plate. The sense of rotation of the
vortices is indicated by arrows. (b) The realization in physical space; parameters are α = 1.85
and β = 0.9. The heavy line is the shear layer, which bounds the recirculation zone.

Then the contribution of two counter-rotating vortices, placed symmetrically about
the imaginary axis, is

dw

dζ
=

1

(ζ − α)2 + β2
− 1

(ζ + α)2 + β2
, (5.2)

choosing m =1/(2β). It is clear that (5.2) also has a stagnation point at ζ = 0.
The function dΩ/dζ retains the same structure as (4.2), and χ is determined by the

poles and zeros of (5.2) according to (2.6). Let us focus first on the pole contribution
Ωa of the vortex at a, which gives

χa =

√
1 − a2

ζ − a
+

√
1 − (a∗)2

ζ + a∗ . (5.3)

Integrating the corresponding expression (4.2), we find

Ωa = ln
(tan(ϕ/2) − c−)(tan(ϕ/2) − c∗

−)

(tan(ϕ/2) − c+)(tan(ϕ/2) − c∗
+)

, c± =
1 ±

√
1 − a2

a
, (5.4)

where sin ζ = ϕ as usual. Thus the contribution from two counter-rotating vortices,
placed at a1 =α + iβ and a2 = −α + iβ , and from the stagnation point at ζ = 0, (4.4),
gives

dz

dϕ
= eΩa1

+Ωa2
+Ω0

dw

dζ
cosϕ. (5.5)

The resulting flow is shown in figure 7(b), for a particular choice of the position of the
two vortices in the ζ plane. The position in real space must be found by integrating
(5.5). The flow lines are drawn using the procedure described in the previous section.
The free streamlines are found by seeding an initial condition very close to the solid
plate.

6. A stirred teacup
We now address the deformation of a free liquid–gas interface by a strong flow in the

interior of the fluid. This means surface tension and gravity are negligible compared
to fluid inertia. Following earlier work in an analogous viscous flow problem (Jeong &
Moffatt 1992), we drive the flow by a double vortex. A very similar inviscid free-
surface problem was studied theoretically and numerically by Verga (2004), however
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Figure 8. (a) The ζ plane for the physical situation shown in (b), which is a vortex doublet,
marked D, placed inside a box filled with fluid at a distance γ form the bottom. A cusp forms
on the free surface. Parameters for the situation shown are γ = 1 and α =1/2.

without giving the exact solution reported below. In the ζ representation, we place
the double vortex at ζ = iγ , and its singularity is w ∝ i/(ζ − iγ ). Thus, including the
image singularity, dw/dζ becomes

dw

dζ
=

ζ(
ζ 2 − γ 2

)2
, (6.1)

where we have normalized the strength of the vortex doublet as usual. As is clear
from the geometry of the problem (see also figure 8), the form of dΩ/dζ is given
by (4.2), as in the two previous problems. According to (2.7), we first find the poles
and zeros of (6.1) in the upper half-plane or the real axis. There is a simple zero at
ζ = 0, and a double pole at ζ = iγ , to which an image contribution has to be added.
In addition, to describe the form of the box, there are singularities at s1/2 = ±α, so
(2.7) becomes

χ =
4ζ

√
1 + γ 2

ζ 2 + γ 2
− 1

ζ
+

ζ
√

1 − α2

ζ 2 − α2
. (6.2)

The contribution coming from the last term of (6.2) is

Ωα ≡
∫

ζ
√

1 − α2dζ

(ζ 2 − α2)
√

1 − ζ 2
=

∫
sinϕ

√
1 − α2dϕ

cos2 ϕ − 1 + α2
= ln

⎡
⎣

(
cosϕ +

√
1 − α2

cosϕ −
√

1 − α2

)1/2
⎤
⎦
(6.3)

which gives

dz

dϕ
= eΩ0+2Ωγ +Ωα

dw

dζ
cos ϕ =

(1 + cosϕ) cosϕ

(cosϕ +
√

1 + γ 2)4

(
cosϕ +

√
1 − α2

cosϕ −
√

1 − α2

)1/2

, (6.4)

which can be integrated in terms of elliptic integrals. However, in practise we found
it more useful to solve the system (4.11), (4.12) numerically. The width w and height
h of the box is given by integrating ϕ from 0 to π/2:

(w, ih) =

∫ π/2

0

dz

dϕ
dϕ. (6.5)

As seen in figure 8(b), there is a cusp singularity that forms on the free surface, at
least in the limit of vanishing surface tension. In the ζ plane, the boundary between
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solid and free surface is at ζ = 1, and the cusp occurs for ζ → ∞. Thus if one puts
ϕ = π/2 + iχ , the cusp is described by the limiting behaviour of the mapping for
χ → ∞. Using sin ϕ = coshχ and cosϕ = − i sinhχ , it is easy to verify that the square
root factor in (6.4) goes to unity in the limit. From the remaining expressions one
obtains

dx

dχ
= −Im

{
dz

dϕ

}
≈ 16

√
1 + γ 2e−3χ ,

dy

dχ
= Re

{
dz

dϕ

}
≈ 4e−2χ . (6.6)

In other words, the limiting shape of the cusp is

x = x0 − 16

3

√
1 + γ 2e−3χ , y = y0 − 2e−2χ , (6.7)

which implies that the cusp is of the generic form x ∝ y3/2. Cusps have previously
been observed in a number of related two-dimensional potential flow problems, for
example, in drop driven by a combination of a single and a double vortex (Hopkinson
1898), or by a source (Sautreaux 1901; Craya 1949; Vanden-Broeck & Keller 1987). In
each case, we have confirmed that the local structure is the same 2/3 cusp. This is to
be expected, since the structure of a singularity will be independent of the large-scale
flow far from it. However, it is remarkable that the same type of cusp is also found in
the very different limit of very viscous fluids (Jeong & Moffatt 1992). The ubiquity of
cusps in free-surface flows remains an open problem, and is discussed in more detail
in Eggers & Fontelos (2009).

7. Discussion
In this paper, we hope to have demonstrated that Hopkinson’s method greatly

expands the repertoire of physically realistic free streamline flows, for which an exact
solution can be found. To this end we have reformulated the method in an algorithmic
form, which neatly separates the physical ingredients to a given problem. One must
specify both the forces that drive the flow, and one must specify the geometry,
consisting of solid walls and free surfaces. Once these two parts of the problem are
given, the solution can be found as prescribed in § 2. In addition, we also extended
Hopkinson’s result to the case that the solid has corners.

We then use the method to construct three new free streamline flows, all of which
correspond to physically realizable experimental set-ups. Of particular current interest
is the example of § 6, which reveals that a strongly stirred free-surface flow will form
cusps. In a three-dimensional setting, they correspond to line-like ‘scars’ on the free
surface. One example illustrating the formation of scars is the turbulent flow shown in
figure 9, whose free surface is covered by a network of such lines. This network appears
to organize the overall structure of the free surface. As illustrated in Brocchini &
Peregrine (2001), there is an upwelling of the flow in between scars, while there is
downwelling at the position of the scar.

In addition, scars may be the locus where air is entrained into the fluid (Brocchini &
Peregrine 2001), as was demonstrated previously for the case of viscous flow (Eggers
2001; Lorenceau, Quéré & Eggers 2004). However, to achieve a proper description
of this process, the outer phase has of course to be included. Near the locus
of entrainment, surface tension and viscosity are likely to be important as well.
The downwelling near the cusp implies that there is flow separation taking place
from the free surface, whose properties have been investigated recently (Sébilleau,
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Figure 9. The free surface of a turbulent flow. On the surface a network of grooves or ‘scars’
is visible; unpublished photograph by Howell Peregrine.

Limat & Eggers 2009). In particular, the viscous boundary conditions are necessary
for a proper local description of flow separation.

The solution of a separated flow generated by a source near a wall was found
originally and shown to one of us (J. Eggers) by the late Howell Peregrine. The
derivation had however been lost, and was therefore proposed as a Master’s project
at the University of Bristol’s Mathematics department.
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